Lipooligosaccharide is required for the generation of infectious elementary bodies in Chlamydia trachomatis.
نویسندگان
چکیده
Lipopolysaccharides (LPS) and lipooligosaccharides (LOS) are the main lipid components of bacterial outer membranes and are essential for cell viability in most Gram-negative bacteria. Here we show that small molecule inhibitors of LpxC [UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc deacetylase], the enzyme that catalyzes the first committed step in the biosynthesis of lipid A, block the synthesis of LOS in the obligate intracellular bacterial pathogen Chlamydia trachomatis. In the absence of LOS, Chlamydia remains viable and establishes a pathogenic vacuole ("inclusion") that supports robust bacterial replication. However, bacteria grown under these conditions were no longer infectious. In the presence of LpxC inhibitors, replicative reticulate bodies accumulated in enlarged inclusions but failed to express selected late-stage proteins and transition to elementary bodies, a Chlamydia developmental form that is required for invasion of mammalian cells. These findings suggest the presence of an outer membrane quality control system that regulates Chlamydia developmental transition to infectious elementary bodies and highlights the potential application of LpxC inhibitors as unique class of antichlamydial agents.
منابع مشابه
Immuno-gold Labelling of Chlamydia trachomatis
Background Chlamydia trachomatis is considered as an important cause of preventable sexually transmitted diseases worldwide. It is known to be of an obligate intracellular nature and enters its target cells via an endocytic process. As major outer membrane protein (MOMP) is one of the main candidates for the attachment and entry of chlamydia to the host cells we have tried to label the epitopes...
متن کاملInhibition of growth of Chlamydia trachomatis by human gamma interferon.
Treatment of HEp-2 cell cultures with highly purified human gamma interferon before infection resulted in the reduction of Chlamydia trachomatis (L2/434/Bu) infectious particle yield. Electron microscope studies showed that interferon did not affect chlamydial conversion to reticulate bodies but influenced the extent of maturation to elementary bodies. High interferon concentrations (greater th...
متن کاملO-28: New Insights into the Mechanisms UnderlyingChlamydia Trachomatis Infection InducedFemale Infertility
Background: Chlamydia (C.) trachomatis is an obligate intracellular gram-negative pathogen affecting over 600 million people worldwide with 92 million new cases occurring globally each year. Genital C. trachomatis infection has been recognized as the most common cause of pelvic inflammatory disease leading to severe tubal damage, ectopic pregnancy, hydrosalpinx and infertility. However, the mec...
متن کاملIsolation of recombinant fragments of the major outer-membrane protein of Chlamydia trachomatis: their potential as subunit vaccines.
Recombinant fragments of the major outer-membrane protein (MOMP) of Chlamydia trachomatis, expressed at high levels in Escherichia coli, were isolated and purified. Antisera to the recombinant proteins reacted preferentially with overlapping synthetic peptides covering the immunoaccessible variable segments of MOMP. These sera also reacted in a species-specific manner with the surface of intact...
متن کاملChlamydia trachomatis persistence in vitro: an overview.
Chlamydiae growing in target mucosal human epithelial cells in vitro can transition from their normal developmental cycle progression, alternating between infectious but metabolically inactive elementary bodies to metabolically active but noninfectious reticulate bodies (RBs) and back to elementary bodies, into a state of persistence. Persistence in vitro is defined as viable but noncultivable ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 25 شماره
صفحات -
تاریخ انتشار 2011